MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB F/6 12/1

A NUMERICAL STUDY OF EIGENVALUE COMPUTATION.(U)
NOV 76 I T YOUNG F19628= 76-C-0002

ESD-TR-76=322

_AD=-AD36 716

UNCLASSIFIED

ol
ADAQ367I6

L -

L.

Il

22 it yee

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

A NUMERICAL STUDY OF EIGENVALUE COMPUTATION

I. T. YOUNG, Consultant
Group 69

Ly / TECHNICAL NOTE 1976-32
L O s € ¥ ‘

18 NOVEMBER 1976

Approved for public release; distribution unlimited.

LEXINGTON MASSACHUSETTS

A NUMERICAL STUDY OF EIGENVALUE COMPUTATION

ABSTRACT

A study of different numerical methods for computing the eigenvalues of
Hermitian matrices has been carried out. The Givens-Householder procedure
was found to be the fastest, most accurate method. Relationships among
eigenvalue accuracy, word size, form of arithmetic, hardware implementation,

and speed are discussed.

L

ABSTRACT

INTRODUCT ION

TABLE O}

1.1 Algebraic Eigenvalue Problem

1.2 Hermitian Matrices and Theix

MATR1IX ALGORITHMS

2.1 The Jacobi Algorithm

o

2.3 The Givens-Householder Algorithm

.2 The Hessenberg/QR Algorithm

2.4 Comparison of Methods

CONTENTS

Solution

ESTIMATION OF COMPUTATION TIME AND ACCURACY

3.1 Complex vs.

5 10 senberg/QR vs. Givens

Real Arithmetic

computation Times

3.4 Analysis of Computational Accuracy

3.4.1 The Jacobi Procedure

Seh.1.1

Sedake2

3.4.2 The Householder Procedure

3.4.2.1

Floating-Point

-Householderx

3.3 Computational Accuracy of the Two Procedures

Calculations

Fixed-Point Calculation

~

-~

)

Error for Tridiagonal Rcduction
1.1 Floating-Point Calculation
1.2 Fixed-Point Calculation

..

Table of Contents (Continued)

3.4.2.2 Eigenvalue Error for Tridiagonal
3.4.3 Summary and Comparison
REAL-TIME EIGENANALYSIS
4.1 The IBM 370/168 as a Serial Processor
4.2 Language Translation
4.3 Summary for IBM Analysis
4.4 PDP 11/45 System
ALTERNATIVES FOR IMPROVEMENT OF SYSTEM PERFORMANCE
5.1 Parallel Processing
5.2 Dynamic Strategies
SUMMARY AND CONCLUSIONS

REFERENCES

1.0 INTRODUCTION

In certain communications systems the ability to rapidly and accuratel)
solve the algebraic eigenvalue problem is of extreme importance. Where the

location of transmitters is to be determined from a set of N array output

readings, one possible signal processing formulation leads to the analysis of

an N by N complex, Hermitian* matrix [10]. The elements of this matrix R arc

complex since sensor readings generate both magnitude and phase information.
This matrix R is a correlation matrix formed by taking the expectation E()
of the matrix (xj)(xj*)t where xj is a vector of length N corresponding to

samples of the N array elements at time j and t represents vector transposi

tion. Thus

= st
K= E[(XJ)(XJ)] .

Since the signal received at any array element is a linear combination of the

transmitted signals from many possible transmitters, the ability to uniquely

identify the number of transmitters is limited by the number of array sensor..

That is, with N sensors it is only possible to identify at most N supposedly
distinct transmitters.

If a given amount of amplification (or power) is available in the form
of weights to be assigned to each of the possible array outputs, then at mo

N-1 weights may be specified independently. Mathematically, if the weights

are represented by a complex vector W and the total power available for weight

ing is constrained, then this is equivalent to the constraint equation
£
W W = 1] :

If we desire that as many of the transmitted signals as possible be nulled,
so as to maximize (or minimize) the reccived power, it is a classical re

] *
*A Hermitian matrix R has elements rii such that rii = rij; thus the diag«
elements are pure real. ; y 3

—-— - IRVO— b - .

e

of matrix theory (the Rayleigh quotient) that this can be achieved by choosing
as a weight vector the eigenvector of R with the largest (or smallest) eigen-
value. Thus the problem of finding suitable weights for received signal
vectors Xj may be recast into the problem of finding the eigenvalues and
eigenvectors of the correlation matrix R associated with the vector X

The rapid and accurate computation of these quantities is the subjcct

of this note.

1.1 Algebraic Eigenvalue Problem

The determination of the eigenvalues and eigenvectors for an arbitrary
matrix 1s known as the algebraic eigenvalue problem and its solution in both
the theoretical and computational sense has received a considerable amount of
attention. The classic discussion of the various techniques available for the
solution of this problem is the book by J. H. Wilkinson, The Algebraic Eigen-
value Problem, Oxford University Press (1965) [1].

The various techniques available read like a flow-chart in terms of the

nature of the matrix to be solved. Assuming that the matrix is not degenerate:
1. Is the matrix real or complex?
2. If complex, is it Hermitian?

3. Are only the eigenvalues required or must the eigenvectors

be determined as well?

4. How much storage is available?

w

How many bits of accuracy in the results are required?

6. How many operations are required for the computation?

=
[3]

Hermitian Matrices and Their Solution

%

The matrices we will be dealing with are complex Hermitian. In
general we will need the eigenvectors as well as the eigenvalues for the
entire matrix. Possible dynamic strategies when not all the eigenvectors
may be required will be discussed in a later section. The reduction of the

scope of the problem to this specific type of matrix leads to the conclusion

J

that there are really three major algorithms available for the computation of
the eigenvalues and eigenvectors: (1) the Jacobi algorithm, (2) the Hessenberg/
QR procedure, and (3) the Givens-Householder algorithm. These algorithms are
iterative procedures which converge to the correct answer. They will be dis-
cussed in detail in later sections. All of these techniques are based on the

following theorem:

It B is any n X n non-singular matrix, then A and B—lAB have
the same eigenvalues. Moreover, if x is an eigenvector of

B-IAB, then Bx is an eigenvector of A.

This transformation from A to B—lAB is called a similarity transformation.
The Jacobi, Hessenberg/QR, and Givens-Householder technique are based on proper
choices for the matrix B.

Almost all of the numerical analysis performed on this problem were done
on an IBM 370/168 equipped with the basic CPU. For reasons that will be
explained later this represents a realistic configuration for a lower bound
on the computation for any serial processor. Timing figures for computations

performed on this system will be used extensively in the following sections.
2.0 MATRIX ALGORITHMS

The algorithms discussed below have been implemented at the Lincoln lLab
oratory Computation Center. Complete discussions of them can be found in
|5,6,8]. 1In addition ALGOL versions of the programs are in [7]. Where com-
parison between the IBM 370/168 and Lincoln Laboratory DEC 11/45 were per-
formed, the identical Givens-lHouseholder FORTRAN routines were run on the sam

matrices.

2.1 The Jacobi Algorithm

The Jacobi algorithm operates by finding a sequence of similarity
transformations such that the transformed matrix converges to a diagonal
matrix A whose elements oi. the diagonal represent the eigenvalues (\1. Ay

An). As an example in two dimensions consider the matrix:

i i S e s s s

X1 T
R f—
F31 *too

One possible similarity transformation may be determined by observing that a

space (y,,) ma

plane rotation of the coordinates space, (x], X,), to a new

be performed in such a way that the terms r. ., and r are annihilated. This

12 21
rotation can be represented by
¥ cosf -sinf X
i]
Yo sinf cosf X,

Expressions for determining the values of cos® and sin8 for this annihilation

may be found in [2]. The use of this algorithm for Hermitian matrices of si:

N by N depends on successive rotation of pairs of axes until the sum of the

squares of the off-diagonal terms goes to zero (or at least less than some

predetermined threshold). The cross-term element r that
P9

lated during any given iteration is called the pivot for the plane rotat:

is to be annihi

and Coldstine, Murray, and Van Neumann [8] showed that if the pivot cho

for each iteration has magnitude greater than the average magnitude fou
off-diagonal element then R will converge to A.

\ computer program for the calculation of the eigenvalues and ecigenve

of a real symmetric matrix using the Jacobi procedure 1s

available in FORT!
in the IBM Scientific Subroutine Package (EIGEN). Complex Hermitian matrice

may be analyzed by noting that R can be written as:

g 3 . n
R =& %+ 3 where Ca D R
€. =D
Ihe matrix R = which is 2N by 2N may be shcwn to have eigenval
D C
(R s Rom Mosiy Nt wmnts Ny Mo Jy WHETE (N o sy B ire the eigen
1 | 2 PA n n l : n

Not much more will be said about the Jacobi procedure because it has a

major problem in terms of the number of computations required. In general an

infinite number of iterations (sweeps) are required to produce a true diagonal
matrix. In practice while the residual off-diagonal terms may only have to
satisfy some threshold condition (e.g., see above), a term rpq which is anni-

hilated on one iteration will most likely be resurrected on a later iteration.
Thus convergence proceeds at a relatively slow rate and the computation time
required is large.

2.2 The Hessenberg/QR Algorithm

This procedure represents the concatenation of two procedures for
the determination of eigenvalues and eigenvectors. The first procedure reduces
a general (not necessarily Hermitian) matrix to a Hessenberg form, that is a

matrix H for which hij = 0 if j < i-1. Thus for a 4 x 4 matrix we have

The second procedure uses a series of unitary similarity transformations to
reduce the Hessenberg matrix to an upper triangular matrix which displays the

eigenvalues on the main diagonal. [Let H be the matrix in Hessenberg form to

be analyzed, R be an upper triangular matrix and Q a unitary matrix, then if

H is non-singular there exists a unique decomposition

H = QR
. |

3 !
!

Ihe theorem happens to be true for any non-singular matrix H but the
s ; < 3 S . A
computations is reduced from N to N if H is a Hessenberg matrix. The proces:

of finding the eigenvalues is based upon application of the iterative equation:

B = QR
gy
Ry e W,
= R

-

An example of how to determine Qi and RAl is given in {2, p, 922}. If H1
(the initial Hessenberg matrix) has eigenvalues satisfying }Ali > A] eees
;An‘ > 0 the sequence {Hi} will converge to an upper triangular matrix with
the eigenvalues on the main diagonal. A major risk incurred by the use of
this routine is that when any pair of eigenvalues are approximately equal, the
procedure may not converge.

Ihe use of a reduction-to-Hessenberg algorithm followed by application of
the QR procedure is important since it represents a standard technique for the
analysis of these complex matrices. At Lincoln Laboratory, the programs may bec
found in a standard FORTRAN package described in (6] and called by the nan
EIGEN Unfortunately, this is the same name used by the IBM Scientific
routine Package for the Jacobi algorithm., The number of arguments used in
the major subroutine call to EIGEN differs (5 for Hessenberg/QR, 4 for Jacobl
however, making it possible to detect which procedure is being called in an

ven program.

Finally, it should be noted that although the Hessenberg/QR is considex
ably faster than the Jacobi procedure and hence is needed to provide baselinc
computation time measurements, it does not take full advantage of the symn

tries inherent in a Hermitian matrix and thus is not the fastest possible

algorithm.

R Dt 34 Amideas

2.3 The Givens-Householder Algorithm

The Jacobi algorithm operates to transform a correlation matrix R to
a diagonal matrix A. The Givens-Householder procedure transforms R to a sym-
metric tridiagonal matrix, T, whose elements t.. are non-zero for at most
li-j] < 1. In a sense the T matrix is a very special case of a Hessenberg
matrix. Thus after the reduction one possible way to determine the eigen-
values is to apply the QR algorithm. At least two other techniques are avail-
able for finding the eigenvalues: the Sturm sequence approach [1,7] and the
QL method (a predecessor of the QR method) which is the technique actually
used for the work reported here [1,2,7]. The two greatest virtues of the
Givens-Householder techniques are (1) its speed -- using the smallest number
of computations to get to the point where the eigenvalue/eigenvector routine
is actually called, and (2) its excellent numerical stability and accuracy.
A detailed explanation of the method by which the symmetric, tridiagonal
matrix is produced will not be given here. Instead the reader is referred to

f2; p, 901; 3. p. 169
2.4 Comparison of Methods

The best comparison of the Jacobi to Givens-Householder approach is
viven in [1, p. 334]. In every aspect (speed, accuracy, storage, solution for
1 limited number of cigenvalues, etc.) the Givens-Householder approach is
superior.

In comparing the Givens-Houscholder method to the Hessenberg/QR approach,
we find that the latter falls between the Jacobi and Givens-Householder method
in value. This really is not surprising since in the computation ot numerical
quantities the fewer the number of computation cycles required the greater the
iccuracy, thus the fastest algorithm is most often the most accurate. The
reason for this is quite clear; every nultiply operation and add operation
introduces the possibility of noise through either overflow or round-off. Thus

the fewer the number of operations the faster and more accurate the result.

In the next section we shall deal with some numerical evaluations of

specific matrices and comparisons of accuracies and computations for variou

algorithms and processors.
5.0 ESTIMATION OF COMPUTATION TIME AND ACCURACY

lo compare various algorithms and different machine configurations for

omputation time and accuracy, a series of experiments were performed.

)

.1 Complex vs. Real Arithmetic

Wilkinson has pointed out [7] that it is not uncommon for softward
packages that implement complex arithmetic to take significantly longer than
might be expected. If we assume that a multiply takes approximately five
times the length of time required for an add, then a complex multiply should
take four to five times the length of an ordinary (real) multiply. It is
not unusual, though, to find software packages that do considerably worse
than this. To guard against this possibility on the IBM 370/168 a simple
test was run to compare the speed of analysis for a 3 x 3 Hermitian matrix

H \ + iB against the 6 X 6 real matrix formed by:

A -B
B A\
where
S 1 -2 0 2 -5
A = 1 () -3 B -2 0 -0
=2 =3 8 5 & {
Using the fastest possible algorithm (i.e., the Givens-Householder) the

malysis took 276 clock times versus the real analysis which took
nes (each clock interval equals 13 microseconds). The complex matrix
a may therefore be used; the analysis of N X N complex matrices i Lgnif

intly faster than the analysis of 2N X 2N real matrices

3.2 Hessenberg/QR vs. Givens-Householder Computation Times

The two procedures were run on identical matrices with the size of

clock times

the matrix N being varied over the range 2 < N < 20. The number of
from the start to the finish of each matrix analysis was recorded. A polynomiil
regression program was used to fit the computation time as a function of matrix
stize, T(N). A cubic polynomial was found to provide the best fit. This was 1
be expected since analysis of the computer programs predicts a computation time
proportional to N”. For the data collected the comparative graphs using the

cubic fit are given in Fig. 1. The equations for the two curves are:

ol o)
Householder -- R(N) = 2.64N° — 23.54N° + 253.26N — 375.03

= 2
Hessenberg =-- T(N) = 29.48N° — 358.43N° + 1905.63N + 2592.54

where computed values of T(N) are in clock intervals of 13 microseconds. While
this is not meant to provide exact prediction of computation time for arbitrary
Hermitian matrices, it does show an approximate 11:1 improvement in speed for
large N. Further the Householder procedure clearly dominates for N > 3. The
coefficient of fit of the two cubic polynomials to the data was given by the

correlation coefficient squared which in each case was:

)
Householder -- p~ = .997

D
Hessenberg -- p~ = .999

Only the values of computation time for 2 < N < 12 were used in the actual

regression analysis. The actual values for N > 14 may be used to check the
prediction accuracy of the cubic polynomials. The cubic equation for the

Householder based on 2 < N < 12 seems to underpredict the computation time !

at most 50% for 14 N < 20. The Hessenberg equation overpredicts the time

by as much as 100%. In any case the Houscholder procedure still clearly do

inates the Hessenberg.

o s b e

Lt il

S

156 | L8-6-1817€

130+

1.04 —

0.78— HESSENBERG-QR

COMPUTATIONS (sec)

0.52 I—

0.26

HOUSEHOLDER

| ¢ 1 | { | |
0 2 4 6 8 10 12 14 16 18 20

MATRIX SIZE

Fig. 1. Comparison of time to compute eigenvectors and eigenvalues of complex
Hermitian matrices using two techniques -- Hessenberg/QR and Householder. The
latter technique offers approximately an 11:1 improvement in speed for large

matrix sizes.

v)

N =14 N = 16 N =18 N =20

9012 14219 19641 ’ 25146 actual
Householder ‘ Lx

/5812 8480 11976 16426 predicted
e #(/ A#Z/ 4/// S LRSS

24977 | 38874 52804 66753 » actual
Hessenberg s ! ! I ,/v

i 7 34730 L 56894 [87510 | .7 12799 predicted

e e s

5.3 Computational Accuracy of the Two Procedures

According to Wilkinson [1] each procedure is numerically quite stable.

To compare accuracies the following matrix was analyzed:

S + 01 T =2 — 5i
El= 1 — 23 6 + 01 -3 — 61
-2 + 51 -3 + 61 8 + 01

The three eigenvalues were identical through at least the first 14 decimal

places, and this exceeded the published accuracy of these eigenvalues in

Wilkinson (7]. Similar, high accuracy results were obtained in other matrice
3.4 Analysis of Computational Accuracy

Wilkinson has done extensive research into finding closed torm oy
sions for the accuracy of eigenvalues computed by various procedures. in thi:
section we shall deal with the accuracy of the Jacobi procedurce and the accurs
of the Housecholder procedure. We know from our previous discussion that the

results for the Hessenberg will fall somewhere between these two.

where:

.4.1 The Jacobi

Procedure

3.4.1.1 Floating-Point Calculations

It has been

eigenvalues is given by [1, p.

“RMS

= matrix size

279] :

= bits of mantissa

= exact eigenvalues

computed eigenvalues

shown

that the

and 6 sweeps of the Jacobi procedure are assumed.

t =] W

But thi s

. nal
reasonable

have:

“RMS

1/2
< 10827\

Sy B

108:2°% » §/?

-
3/2

/

For

the most pessimistic estimate of the errm

distribution of

rounding errors then a more

RMS error in the estimate

reasonable size

and if we expect

recalistic bound

3.4.1.2 Fixed-Point Calculation

For fixed-point computation of the eigenvalue a similar

analysis leads to:

Fol Tt 572 |
i LRMS L ()l'\1~ N i
L ~ Rt ——

where:
l\'l is a constant such that 1 < K < 10
t = number of bits
N = matrix size

3.4.2 The Householder Procedure

The error generated in this method may be broken into two picces
corresponding to each of the two major steps in the analysis. The first is the
error associated with the computation of the tridiagonal matrix from the orig
inal matrix. The second is the error associated with the eigenanalysis of the

tridiagonal matrix.
3.4.2.1 Error for Tridiagonal Reduction
3.4.2,1.1 Floating-Point Calculation

Floating-point calculations may be donc¢ either with

or without accumulation of partial sums in double precision. That is, 1t

are computing a dot product of two real vectors (x ¢ y), then the computatior

Of?

may be done by rounding-off after each multiply and add operation (without

accumulation) or by waiting until the N multiplies and adds are completed

and then rounding-off (with accumulation). It accumulation is used the onl

double precision number that must be saved is the partial sum (of products).
lhe difference in the RMS error between these two techniques is at worst a

factor of N. The expressions are given by:

Floating-Pt. with Accumulation

Floating-Pt. without Accumulation

s e
71,

“RMS

J

1
e L
The constants 40 and 32 are upper bounds and actually depend on details of
how the floating-point math is done. For example, small numbers should be

added together first.
3.4.2.1.2 Fixed-Point Calculation
In fixed-point computations accumulation with double
precision of partial sums may likewise be used. Unfortunately no simple
expression is available for the RMS error. Instead, however, a simple expres-

sion is available for the maximum error. The results are

Fixed-Pt. with Accumulation

= m:')x, ki—;:.

S R 14

Fixed-Pt. without Accumulation

¢ < K,
max 3 |

K, and K; are constants that once again depend on details of how the mathe-
matics is done and the assumption about round-off error (i.e., worst-case,
average, etc.). In either case 1 g_KZ, K3 < 10. We will, in fact, use

K, = K3 = 24 as a conservative upper bound.

3.4.2.2 Eigenvalue Error for Tridiagonal

As mentioned earlier, a number of techniques exist for
determining the eigenvalues of a tridiagonal matrix. For each of these
methods, however, the error is less than the error associated with determining
the tridiagonal matrix. In the Sturm sequence approach, for example, the

error after p iterations is given by:

[u A (15.06)2°%.+ 3+ 2°P

p+l
This is less than the error for the tridiagonal matrix by a factor of N. Thus
we may conclude that the error associated with the Householder method is dom-
inated by the error involved in the reduction to a tridiagonal matrix.

3.4.3 Summary and Comparison

For the Jacobi procedure we have:
References

T
Floating Pt. ERMS 1X+2 t\)" [1, p. 280]
3 2] ¢ Ea b2 ' Q
Fixed Pt. ERMS - hkl_ N 11, p. 281]
For the Householder:
Floating Pt. witl < 40+27 N 1 07
é g ¢ Wath Eqmg = 4002 1 fily . 28
accumulation ¥
: P T o
without Epmg < 3272 N {1, p. 298
accumulation '
15

Fixed Pt. with £ < K2 TN {1, p. 298]

2 “max 2
accumulation

- ;.
wi thout B K2 tyS/2

e i1, p. 299}
accumulation

In comparing Jacobi to Householder we see they are virtually the same in terms
of the bounds. Thus we will focus our attention solely on the issue of the
error in the Householder approach.

While the application referred to in Section 1 needs the solution to the
eigenvector problem to determine the appropriate weight vectors, we will use
the eigenvalue problem to gain insight into what type of processor power is
required to achieve an arbitrary accuracy.

If we assume that we would like to be able to specify the eigenvalue to
12 bits, i.e., one part in 4096, then, how many bits t must the processor

have if the matrix size is N? All of our error bounds are of the form:

[t we I'L‘({llil't‘ that
SE =13
N2 N =2 25

then we certainly satisfy the conditions of our problem. Solving for t yields:

I
Pt > 15 & V log N+ JTog A
1 2 i

Plotting this expression as a function of N with the various strategies as

parameters we have Fig. 2. We see that in the worst case (fixed pt., without
accumulation) we need less than 30 bits to achieve the required accuracy when
N=20, For the best case (floating pt., with accumulation) we need more than
20 bits when N=20, This immediately suggests that the optimum processor (16

bit) in terms of cost and speed uses double precision integer (i.e., fixed pt.)

arithmetic. In terms of error analysis this is just as effective a strategy as

11 CVI

30
18-6-18177
25|
o
@
W
S ek 4
o FLOATING POINT WITH ACCUMULATION
®
% FIXED POINT WITH ACCUMULATION
= o FLOATING POINT WITHOUT ACCUMULATION
FIXED POINT WITHOUT ACCUMULATION
5
i ! L. {18 | | | 1 |
0 2 4 6 8 10 12 14 16 18 20
MATRIX SIZE
Fig. 2. Comparison of the number of bits theoretically required to acl

12-bit accuracy in the eigenvalue computation as a function of matrix
and the computational mathematics used.

using floating point with accumulation since it really is not possible to buy a

20 bit processor and floating point computations take significant time even in

hardware. * ;
1.0 REAL-TIME EIGENANALYSIS

[t is of interest to determine what is the largest matrix that could be
continually analyzed in a given amount of time. For example, if 100 milli-
seconds are available, what is the largest N such that the complete eigen-
analysis could be performed? In that way the weight (eigenvector) could be
updated 10 times per second. To answer this we first look at the results from
Section 3.2 for the Householder analysis. Replotted as in Fig. 3 we have that
in 100 ms the largest value is N=15. This value is clearly dependent on the
hardware configuration of the processor and the efficiency of the language

translator.

4.1 The IBM 370/168 as a Serial Processor

The computations described above were made on the Lincoln Laboratory
IBM 370/168. This machine has a basic machine cycle time of 80 nanoseconds
operating out of its 16 general registers. Access to high-speed buffer storage
takes from 160 ns (if overlap is used) to 240 ns. Add time is 1 machine cycle.
The data path for all these operations is 8 bytes (64 bits) wide. The fixed-
point multiply takes 780 ns; the floating-point multiply, 1870 ns. Since therc
is no special purpose hardware for vector or matrix operations (that is, we
cannot do a parallel X - ;). we consider for the purpose of this report that
the computer is strictly serial processing. No parallelism is available to cut
down computation time. In that case the times sited above represent just about
the best one can do with current solid-state hardware including special purpe
processors. (We are not including design involving the recently announced sub-
nonosecond ECL logic.) Thus the 370/168 represents a realistic lower bound for
the class of all general purpose and special purpose serial processors.

*It might be useful, however, to explore one or two of the 24-bit machines
with specially constructed high-speed floating point hardware with double
precision for accumulation.

COMPUTATIONS (msec)

234

208

182

156

130

104

78

Time to compute eigenvectors and eigenvalues for a comple
as a function of matrix size using the Houscholder algorithm.

B

!‘:8-6-18178!

A

HOUSEHOLDER TECHNIQUE

8 10 12

MATRIX SIZE

}.2 Language Translation

fo take advantage of the 370/168 hardware speed the programs executed
on it must make efficient use of the general purpose registers, index registers,
high-speed buffer storage, overlapping, and hardware multipliers. All of the
programs were written in FORTRAN IV and compiled on H EXTENDED IBM 0OS COMPILER

[4]. TI

his compiler has optimization features to improve run-time performance.

lhe programs themselves were carefully coded to maximize performance.

}.3 Summary for IBM Analysis

Since we have here the coupling between an efficient, optimized pro-
gram and compiler and an extremely high-speed processor we may treat the
results in Section 4.0 as a realistic upperbound to the matrix size N that
can be processed in a given time T. To go to the other end of the spectrum
we run the same programs on a PDP 11/45 to estimate the "slowest' that one

would have to settle for in terms of modern minicomputer performance.
4.4 PDP 11/45 System

lhe DEC PDP 11/45 system used is in Lincoln Laboratory's Group 24.
[t consists of 64K words of 900 ns core memory and a number of I/0 peripherals
[t does not include a hardware floating-point processor nor an optimized
FORTRAN compiler. Memory interleaving permits an effective cycle time of
150 ns. Running the same matrices and the same programs on the 11/45 as
were run on the 370/168 showed a decrease in speed by about a factor of 15
Thus only a 2 x 2 matrix (N=2), could be analyzed in 100 ms. If we compar
the largest matrix (N=20) and ask for the total running time on each of the

two systems the results would be:

IBM 370/168 (N=20) 1 ASS

DEC PDP 11/45 (N=20) I' > 40s

Of course, computation on the 11/45 could be substantially improved by the

following:

1. Use of semiconductor memory, and
2. Floating-point hardware and optimized FORTRAN, or

3. Double-precision integer hardware and optimized machine

language code.

It is the author's experience that use of the third approach often leads to
improvement on the order of 100 in speed thus bringing it close to the IBM
system in performance. Ultimately this is at the sacrifice of accuracy, but
as discussed in an earlier section the issue of accuracy is not critical here

given 32 bit arithmetic.
5.0 ALTERNATIVES FOR IMPROVEMENT OF SYSTEM PERFORMANCE

Two basic approaches are available to improve system performance. The
first involves a greater use of parallel processing to perform the eigenanal-
ysis. The second involves a modification of the problem statement to a dynamic

strategy so that not all eigenvectors are continually being determined.

5.1 Parallel Processing

The Householder approach naturally suggests the use of pipeline pro-
cessing techniques to achieve an increase in speed. Two processors can be
used; one to perform the reduction to tridiagonal form and the other to perforn

the eventual eigenanalysis. At best, however, this leads to a decrease in time
by a factor of 2 if both processes take the same time. Given the low-cost of
modern processors such as the 11/45 and the use of shared memories this is
certainly a reasonable first improvement.

Reviewing the details of the algorithm provides another approach to
decreasing the computation time. At a number of places in this memorandum
we have used the vector dot product (VDP) as an example of a typical calcula
tion. In fact, the VDP is used extensively in the Householder analysis and
this leads us to consider if we might improve its performance on our target

machine. The time required () is obviously on the order of N times the

T
Vbp
time required for one multiply and add operation (MAD)

" N (MAD)

t
Vbp
To improve this number we have two choices:

1. Build a special purpose dot-product calculator that is given the
starting address and length of the two vectors and uses direct memory access
(DMA) to acquire and compute the required result. Instead of N multiplies and
adds we have N memory fetches (assuming a super high-speed multiplier in the
special purpose calculator). Since a MAD takes about 7 to 9 memory cycles this

implies a time reduction of that amount.

2. Build a full-parallel vector dot-product calculation that has
special simultaneous access to all the elements of each vector. Assuming a
tull set of multipliers (N) the number of cycles would be proportional to
log,N adds (this is based on an initial model that looks like the following

> b
for (x * v when N=4).

) TURER oitet o i
‘ ™ Y1 g ! J Y2 [& rs | X4 ‘ ; ’
t " ! ! | |
SNl
\’/‘\ */ \—\/ N -(/
Ist parallel op X) (x) (X) (X
[:
2nd parallel op A/jfl [_m_____{, L__,___}
“ .

3rd parallel op ! (ﬁrj,_ . TR |

Of course, this is the costliest solution but it provides for reduction

- % . . i «
computations from the N° noted in an earlier section to about ! For large

N this can mean a significant reduction in computation time.

5.2 Dynamic Strategies

In many instances where the eigenvector weights that we are deter-
mining are not all continually changing, it is inappropriate to continue
solving for all the eigenvectors. Alternatively we might only wish to solve
for the eigenvector associated with the biggest (or smallest) set of eigen-
vectors.

Where these two possibilities exist the use of the Sturm sequence approac
[1-3,7] provides the solution to just the eigenvalues at a further increase i
speed. The desired eigenvectors may then be determined using several ditfe:
ent techniques (inverse iteration, power method with deflation, [3]). If the
number of eigenvectors that need to be found is small compared to N, then a
further savings in computation time will exist. If, however, we do not know,
a priori, how many eigenvectors we will need until we have looked at the
eigenvalues, then we can only talk about the expected computation time. The
expected computation time requires a probabilistic model for the number of
eigenvalues that will need to be solved at any time. The determining of an
appropriate model could form the basis for further work on this problem.
Complicated strategies, like following the trend in the number of eigenvector:
that need determination, might also provide incremental savings in computa-

tion time.
6.0 SUMMARY AND CONCLUSIONS

1. The Givens-Householder procedure for the analysis of Hermitian
matrices provided the fastest, most accurate method for determining the eige
vectors and eigenvalues.

3

2. Given a requirement of accuracy to 12 bits, 32 bits represent
convenient size for mathematical operation; that is, double precision integer

on a 16 bit minicomputer.

3. If the entire operation is coded in machine language and usc

hardware multiply/divide then one can expect to be able to process 10 10

matrices in 100 ms intervals. The size of other matrices that may b

(N

10)

n

processed given other time intervals may be determined from Fig. 3 and the

results of Sections 4.4 and 5.1.
4. If higher speed is required then more parallel processing must

be used. In addition dynamic strategies may be employed when only a limited

number of eigenvectors need be determined.

10.

REFERENCES
J. H. Wilkinson, The Algebraic Figenvalue Problem (Clarendon Press,
Oxford, 1965).

[l. M. Young and R. T. Gregory, A Survey of Numerical Mathematics
(Addison-Wesley, Reading, Massachusetts, 1973).

\. M. Cohen, Numerical Analysis (Wiley and Sons, New York, 1973),

"IBM 0S Fortran IV (H Extended),' Compiler Programmer's Guide, Third
Edition (1974).

IBM Scientific Suh ine Package, Fifth Edition (1970).

Additions to (! de, Technical Memorandum S-0112-2, Lincoln
Laboratory, M.I. Ty 1975).

J. H. Wilkinson and C. nsch, Linear Algebra (Springer-Verlag,

Berlin, 1971).

[nternational Mathematical and Statistical Library, Library 1, Edition
(FORTRAN 1IV) S/370-360 (1975).

H. H. Goldstine, F. J. Murray, and J. von Neumann, 'The Jacobi Method
for Real Symmetric Matrices,'" J. Assoc. Comp. Mach. 6, 59 (1959).

Navy Communications Quarterly Technical Summary, Lincoln Laboratory,
M.I.T. (15 April 1974), DDC AD-919549-L.

1
‘

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

v,

SECURIT

,Q N7 -

) READ INSTRUCTIONS
| L, REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
V- REPORT BER \ 2. GOVT ACCESSION NO. | 3. RECIPIENT'S CATALOG NUMBER
k E sn 'R-76-322 |
~ T2 TITLE ‘and Subutle) 5. TYPE OF REPORT & PERIOD COVERED
/ '9 Technical)lote »
| } -
f / A Numerical Study of Eigenvalue Computation , 3 gl SiE
| — 6. PERFORMING ORG. REPORT NUMBER
Technical Note 1976-32
[7. AUTHORIy) 8. CONTRACT OR GRANT NUMBER(s/
J lan I./\'oung F19628-76-(‘-0002
S i L e A
{5 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
S incols T.abearat M.LT AREA & WORK UNIT NUMBERS
LHHCASE L3 IAEARSRE A (s ks Program Element Nos. 65705F |
P.O. Box 73 and 63431 F e "‘"“/
Lexington, MA 02173 Project Nos. 649L an 929, (A L“fL)
7. CONTROLLING OFFICE NAME AND ADDRESS 12._REPORT DATE -
Air Force Systems Command, USAF 4)/ 18 Nov“' ’76
Andrews AFB L SR
Washington, DC 20331 - 413 PAGES
(y 2%,
14, MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) 15. SECURITY CLASS. (of this report)
Electronic Systems Division Unclassified
fHfanscom AFB
Bedford, MA 01731 15a. DECLASSIFICATION DOWNGRADING
SCHEDULE
4 | 16. DISTRIBUTION STATEMENT (of this Report)
f Approved for public release; distribution unlimited.
{
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
18. SUPPLEMENTARY NOTES
None
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
eigenvalues computational accuracy Jacobi procedure
Hermitian matrices Givens-Householder eigenanalysis
matrix algorithms procedure
20. AASTRACT (Continue an reverse side if necessary ond identify by block number)
A study of different numerical methods for computing the eigenvalues of Hermitian matrices
has been carried out. The (ivens-ffouseholder procedure was found to be the fastest, most accurate
method. Relationships among eigenvalue accuracy, word size, form of arithmetic, hardware imple -
mentation, and speed are discussed.
FORM
DD | i 1473 EODITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED)

¥ L ASSH’I(’AI!ON OFf THIS PAGE .M‘N Data hm red

i s - SUUURRET ST RNV TP SIS S YO

